首页> 外文OA文献 >Lightweight obfuscation techniques for modeling attacks resistant PUFs
【2h】

Lightweight obfuscation techniques for modeling attacks resistant PUFs

机译:用于建模抗攻击pUF的轻量混淆技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Building lightweight security for low-cost pervasivedevices is a major challenge considering the design requirementsof a small footprint and low power consumption. Physical UnclonableFunctions (PUFs) have emerged as a promising technology toprovide a low-cost authentication for such devices. By exploitingintrinsic manufacturing process variations, PUFs are able togenerate unique and apparently random chip identifiers. Strong-PUFs represent a variant of PUFs that have been suggestedfor lightweight authentication applications. Unfortunately, manyof the Strong-PUFs have been shown to be susceptible tomodelling attacks (i.e., using machine learning techniques) inwhich an adversary has access to challenge and response pairs.In this study, we propose an obfuscation technique during postprocessingof Strong-PUF responses to increase the resilienceagainst machine learning attacks. We conduct machine learningexperiments using Support Vector Machines and Artificial NeuralNetworks on two Strong-PUFs: a 32-bit Arbiter-PUF and a 2-XOR 32-bit Arbiter-PUF. The predictability of the 32-bit Arbiter-PUF is reduced to ~ 70% by using an obfuscation technique.Combining the obfuscation technique with 2-XOR 32-bit Arbiter-PUF helps to reduce the predictability to ~ 64%. More reductionin predictability has been observed in an XOR Arbiter-PUFbecause this PUF architecture has a good uniformity. The areaoverhead with an obfuscation technique consumes only 788 and1080 gate equivalents for the 32-bit Arbiter-PUF and 2-XOR 32-bit Arbiter-PUF, respectively.
机译:考虑到占地面积小和功耗低的设计要求,为低成本的普及型设备构建轻量级安全性是一项重大挑战。物理不可克隆功能(PUF)已经成为一种有前途的技术,可以为此类设备提供低成本的身份验证。通过利用内在的制造工艺变化,PUF能够生成唯一且显然随机的芯片标识符。强PUF代表了已建议用于轻量级身份验证应用程序的PUF的变体。不幸的是,许多Strong-PUF被证明容易受到建模攻击(即使用机器学习技术)的攻击,在这种攻击中,对手可以访问挑战和响应对。提高抵御机器学习攻击的能力。我们在两个Strong-PUF上使用支持向量机和人工神经网络进行机器学习实验:32位Arbiter-PUF和2-XOR 32位Arbiter-PUF。通过使用混淆技术,将32位Arbiter-PUF的可预测性降低到〜70%;将混淆技术与2-XOR 32位Arbiter-PUF结合使用有助于将可预测性降低到〜64%。由于这种PUF体系结构具有良好的一致性,因此在XOR仲裁器PUF中观察到了更多的可预测性降低。采用混淆技术的区域开销对于32位Arbiter-PUF和2-XOR 32位Arbiter-PUF分别仅消耗788和1080门等效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号